金年会-(中国)金字招牌,信誉至上
量院理学
打开微信,点击右上角的“ + ”,选择“扫一扫”功能,
对准下方二维码即可。
网站后台
网站首页
关于我们
团队建设
旗下产业
研究生教育
党建之窗
员工工作
员工工作
服务平台
金年会金字招牌至上网站简介
现任领导
机构设置
议事协调机构
团队队伍
学科概况
科研项目
科研成果
学术活动
专业建设
课程建设
实验室建设
本科生招生
硕士点简介
招生与就业
中外合作办学项目
日常管理
组织结构
青春党建
党员风采
理论视窗
学工概况
学风建设
团学风采
科技创新
奖惩助贷
心理健康
就业信息
学子风采
金年会金字招牌至上网站文化节
员工动态
员工风采
班级存照
公司黄页
办公服务
安全管理
下载中心
学科概况
科研项目
科研成果
学术活动
您现在的位置:金年会金字招牌至上网站>
学术活动
Fast Decorrelated Neural-Net Ensembles with Random Weights
时 间:2013年5月9日(星期四)14:30
地 点:格致中楼503
报告人:Dianhui Wang (澳大利亚拉筹伯大学)
Abstract. Negative correlation learning (NCL) aims to produce ensembles with sound generalization capability through controlling the disagreement among base learners' outputs. Such a learning scheme is usually implemented by using feed-forward neural networks with error back-propagation algorithms (BPNNs). However, it suffers from slow convergence, local minima problem and model uncertainties caused by the initial weights and the setting of learning parameters. To achieve a better solution, this paper employs the random vector functional link (RVFL) networks as base components, and incorporates with the NCL strategy for building neural network ensembles. The basis functions of the base models are generated randomly and the parameters of the RVFL networks can be determined by solving a linear equation system. An analytical solution is derived for these parameters, where a cost function defined for NCL and the well-known least squares method are used. To examine the merits of our proposed algorithm, a comparative study is carried out with nine benchmark datasets. Results indicate that our approach outperforms other ensembling techniques on the testing datasets in terms of both effectiveness and efficiency.
Dianhui Wang received his PhD from Northeastern University, Shenyang, China, in 1995. From 1995 to 2001, he worked as a Postdoctoral Fellow with Nanyang Technological University, Singapore, and as a Researcher with The Hong Kong Polytechnic University, Hong Kong. He joined the Department of Computer Science and Computer Engineering at La Trobe University in July 2001, and currently works there as a Reader and Associate Professor. He is also associated with the State Key Laboratory of Synthetical Automation of Process Industries, Northeastern University, China.
欢迎广大师生参加!
[ 返回 ]
|
员工风采
|
团学风采
|
学风建设
|
招生与就业
|
硕士点简介
|
机构设置
|
团队队伍
|
现任领导
|
Copyright © 金年会-(中国)金字招牌,信誉至上 版权所有 学院地址:杭州市下沙高教园区学源街金年会金字招牌至上网站格致中楼 邮编:310018 电话:0571-86914412
欢迎访问金年会金字招牌至上网站官方网站!